top of page
Search

Kubota Product Identification Number: The Essential Information for Service and Maintenance

alyxorourke112jv1g


Toll REFERENCES Aliprantis, A. O., et al. (1999). Cell activation and apoptosis by bacterial lipoproteins throughToll-like receptor-2. Science 285(5428): 736-9. PubMed Citation: 10426996Ambrosi, P., Chahda, J. S., Koslen, H. R., Chiel, H. J. and Mizutani, C. M. (2014). Modeling of the Dorsal gradient across species reveals interaction between embryo morphology and Toll signaling pathway during evolution. PLoS Comput Biol 10: e1003807. PubMed ID: 25165818Anderson, K.V., Jürgens, G. and Nüsslein-Volhard, C. (1985). Establishment of dorsal-ventral polarity in the Drosophila embryo: genetic studies on the role of the Toll gene product. Cell 42: 779-789. PubMed Citation: 3931918Armstrong, N. J., et al. (1998). Conserved Spatzle/Toll signaling in dorsoventral patterning ofXenopus embryos. Mech. Dev. 71(1-2): 99-105. PubMed Citation: 9507077Biemar, F., et al. (2006). Comprehensive identification of Drosophila dorsal-ventral patterning genes using a whole-genome tiling array. Proc. Natl. Acad. Sci. 103(34): 12763-8. Medline abstract: 16908844 Boutros, M., Agaisse, H. and Perrimon, N. (2002). Sequential activation of signaling pathways during innate immune responses in Drosophila. Dev. Cell 3: 711-722. 12431377 Bowman, A. B., et al. (2000). Kinesin-dependent axonal transport is mediated by the sunday driver (SYD) protein. Cell 103: 583-594. 11106729 Burns, K., et al. (1998). MyD88, an adapter protein involved in interleukin-1 signaling. J. Biol. Chem. 273(20): 12203-9. PubMed Citation: 9575168Byrd, D. T., et al. (2001). UNC-16, a JNK-signaling scaffold protein, regulates vesicle transport in C. elegans. Neuron 32: 787-800. 11738026 Carvalho, L., Jacinto, A. and Matova, N. (2014). The Toll/NF-kappaB signaling pathway is required for epidermal wound repair in Drosophila. Proc Natl Acad Sci U S A 111(50):E5373-82. PubMed ID: 25427801Charatsi, I., et al. (2002). Krapfen/dMyd88 is required for the establishment of dorsoventral pattern in the Drosophila embryo. Mech. Dev. 120: 219-226. 12559494 Chaudhary, P. M., et al. (1998). Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood 91(11): 4020-7. PubMed Citation: 9596645Chen, L. Y., et al. (2006). Weckle is a zinc finger adaptor of the toll pathway in dorsoventral patterning of the Drosophila embryo. Curr. Biol. 16(12): 1183-93. Medline abstract: 16782008 Choe, K. M., Werner, T., Stoven, S., Hultmark, D. and Anderson, K. V. (2002). Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 296: 359-362. 11872802 Chow, J. C., et al. (1999). Toll-like receptor-4 mediates lipopolysaccharide-induced signaltransduction. J. Biol. Chem. 274(16): 10689-10692. PubMed Citation: 10196138 Coll, O., et al. (2010). A novel, noncanonical mechanism of cytoplasmic polyadenylation operates in Drosophila embryogenesis. Genes Dev. 24(2): 129-34. PubMed Citation: 20080951Colonnetta, M. M., Lym, L. R., Wilkins, L., Kappes, G., Castro, E. A., Ryder, P. V., Schedl, P., Lerit, D. A. and Deshpande, G. (2021). Antagonism between germ cell-less and Torso receptor regulates transcriptional quiescence underlying germline/soma distinction. Elife 10. PubMed ID: 33459591Creton, R., Kreiling, J. A. and Jaffe, L. F. (2000). Presence and roles of calcium gradients alongthe dorsal-ventral axis in Drosophila embryos. Dev. Biol. 217: 375-385. PubMed Citation: 10625561 Davidson, C., Tirouvanziam, R., Herzenberg, L. and Lipsick, J. (2004). Functional Evolution of the Vertebrate Myb Gene Family: B-Myb, but neither A-Myb nor c-Myb, complements Drosophila Myb in Hemocytes. Genetics 169(1): 215-29. 15489525 De Gregorio, E., et al. (2002). The Toll and Imd pathways are the major regulators of the immune response in Drosophila. EMBO J. 21: 2568-2579. 12032070 Dziarski, R. (2004). Peptidoglycan recognition proteins (PGRPs). Mol. Immunol. 40: 877-886. 14698226 Edwards, D. N., Towb, P. and Wasserman, S. A. (1997). An activity-dependent network of interactions links the Rel protein Dorsal with its cytoplasmic regulators. Development 124(19): 3855-3864. PubMed Citation: 9367441El Chamy, L., Leclerc, V., Caldelari, I. and Reichhart, J. M. (2008). Sensing of 'danger signals' and pathogen-associated molecular patterns defines binary signaling pathways 'upstream' of Toll. Nat. Immunol. 9: 1165-1170. PubMed Citation: 18724373Eldon, E., et al. (1994). The Drosophila 18 wheeler is required for morphogenesis and has striking similarities to Toll. Development 120: 885-899. PubMed Citation: 7600965 Engel, E., Viargues, P., Mortier, M., Taillebourg, E., Coute, Y., Thevenon, D. and Fauvarque, M. O. (2014). Identifying USPs regulating immune signals in Drosophila:USP2 deubiquitinates Imd and promotes its degradation by interacting with the proteasome. Cell Commun Signal 12: 41. PubMed ID: 25027767Ferreira, A. G., Naylor, H., Esteves, S. S., Pais, I. S., Martins, N. E. and Teixeira, L. (2014). The Toll-Dorsal pathway is required for resistance to viral oral infection in Drosophila. PLoS Pathog 10: e1004507. PubMed ID: 25473839Galindo, R. L., et al. (1995). Interaction of the pelle kinase with themembrane-associated protein tube is required for transduction of the dorsoventral signal in Drosophila embryos. Development 121: 2209-2218. PubMed Citation: 7635064 Garver, L. S., Wu, J. and Wu, L. P. (2006). The peptidoglycan recognition protein PGRP-SC1a is essential for Toll signaling and phagocytosis of Staphylococcus aureus in Drosophila. Proc. Natl. Acad. Sci. 103(3): 660-5. 16407137 Gay, N. J., et al. (1991). A leucine-rich repeat peptide derived from theDrosophila Toll receptor forms extended filaments with abeta-sheet structure. FEBS Lett. 291 (1): 87-91. PubMed Citation: 1657640Germani, F., Hain, D., Sternlicht, D., Moreno, E. and Basler, K. (2018).The Toll pathway inhibits tissue growth and regulates cell fitness in aninfection-dependent manner. Elife 7. PubMed ID: 30451683Ghavi-Helm, Y., Jankowski, A., Meiers, S., Viales, R. R., Korbel, J. O. and Furlong, E. E. M. (2019). Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nat Genet 51(8): 1272-1282. PubMed ID: 31308546 Gillespie, S. K. and Wasserman, S. A. (1994). Dorsal, a Drosophila Rel-like protein, is phosphorylatedupon activation of the transmembrane protein Toll. Mol Cell Biol 14: 3559-68. PubMed Citation: 8196601Gonzalez-Crespo, S. and Levine, M. (1994). Related target enhancers for dorsal and NF-kappa B signaling pathways. Science 264: 255-8. PubMed Citation: 8146656Gottar, M., et al. (2006). Dual detection of fungal infections in Drosophila via recognition of glucans and sensing of virulence factors. Cell 127: 1425-1437. PubMed Citation: 17190605Guida, S., Heguy, A. and Melli, M. (1992). The chicken IL-1 receptor: differential evolution of thecytoplasmic and extracellular domains. Gene 111: 239-43Halfon, M. S., Hashimoto, C. and Keshishian, H. (1995). The Drosophila Toll gene functions zygotically and is necessary for proper motoneuron and muscle development. Dev Biol 169: 151-167Halfon, M. S. and Keshishian, H. (1998). The Toll pathway is required in the epidermis for muscledevelopment in the Drosophila embryo. Dev. Biol. 199(1): 164-174Hashimoto, C., Hudson, K. L. and Anderson, K. V. (1988). The Toll gene of Drosophila, required for dorsal-ventralembryonic polarity, appears to encode a transmembraneprotein. Cell 52: 269-79 Hashimoto, C., Gerttula, S. and Anderson, K. V. (1991). Plasma membrane localization of the Toll protein in thesyncytial Drosophila embryo: importance oftransmembrane signaling for dorsal-ventral patternformation. Development 111: 1021-8 Heguy, A., et al. (1992). Amino acids conserved in interleukin-1 receptors(IL-1Rs) and the Drosophila Toll protein are essential forIL-1R signal transduction. J Biol Chem 267: 2605-9Horng, T. and Medzhitov, R. (2001). Drosophila MyD88 is an adapter in the Toll signaling pathway. Proc. Natl. Acad. Sci. 98: 12654-12658. 11606776 Horng, T., et al. (2002). The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 420: 329-333. 12447442 Hu, S. and Yang, X. (2000). dFADD, a novel death domain-containing adapter protein for the Drosophila caspase DREDD. J. Biol. Chem. 275: 30761-30764. 10934188 Hu, X., Yagi, Y., Tanji, T., Zhou, S. and Ip, Y. T. (2004). Multimerization and interaction of Toll and Spatzle in Drosophila. Proc. Natl. Acad. Sci. 101(25): 9369-74. 15197269 Huang, A. M., Rusch, J., and Levine, M. (1997). An anteroposterior Dorsal gradient in the Drosophila embryo. Genes Dev. 11(15): 1963-1973Huang, H. R., et al. (2010). Endocytic pathway is required for Drosophila Toll innate immune signaling. Proc. Natl. Acad. Sci. 107(18): 8322-7. PubMed Citation: 20404143Hultmark, D. (1994). Macrophage differentiation marker MyD88 is a member of theToll/IL-1 receptor family. Biochem. Biophys. Res. Commun. 199: 144-6Inaki, M., Yoshikawa, S., Thomas, J. B., Aburatani, H. and Nose, A. (2007). Wnt4 is a local repulsive cue that determines synaptic target specificity. Curr. Biol. 17: 1574-1579. PubMed Citation: 17764943Inaki, M., Shinza-Kameda, M., Ismat, A., Frasch, M. and Nose, A. (2010). Drosophila Tey represses transcription of the repulsive cue Toll and generates neuromuscular target specificity. Development 137(13): 2139-46. PubMed Citation: 20504957Ing-Simmons, E., Vaid, R., Bing, X. Y., Levine, M., Mannervik, M. and Vaquerizas, J. M. (2021). Independence of chromatin conformation and gene regulation during Drosophila dorsoventral patterning. Nat Genet 53(4): 487-499. PubMed ID: 33795866Ji, S., Sun, M., Zheng, X., Li, L., Sun, L., Chen, D. and Sun, Q. (2014). Cell-surface localization of Pellino antagonizes Toll-mediated innate immune signalling by controlling MyD88 turnover in Drosophila. Nat Commun 5: 3458. PubMed ID: 24632597Kagan, J. C., et al. (2008). TRAM couples endocytosis of Toll-like receptor 4 to the induction of interferon-beta. Nat. Immunol. 9: 361-368. PubMed Citation: 18297073 Kambris, Z., et al. (2006). Drosophila immunity: A large-scale in vivo RNAi screen identifies five serine proteases required for Toll activation. Curr. Biol. 16: 808-813. 16631589 Katsukawa, M., Ohsawa, S., Zhang, L., Yan, Y. and Igaki, T. (2018). Serpin facilitates tumor-suppressive cell competition by blocking Toll-mediated Yki activation in Drosophila. Curr Biol 28(11):1756-1767. PubMed ID: 29804808Keith, F. J. and Gay, N. J. (1990). The Drosophila membrane receptor Toll can function to promote cellular adhesion. EMBO J. 9: 4299-306Kirschning, C. J., et al. (1998). Human toll-like receptor 2 confers responsiveness to bacteriallipopolysaccharide. J. Exp. Med. 188(11): 2091-7 Kubota, K., Keith, F. J. and Gay, N. J. (1993). Relocalization of Drosophila Dorsal protein can beinduced by a rise in cytoplasmic calcium concentration and the expression of constitutively active but not wild-type Toll receptors. Biochem J 296 ( Pt 2): 497503Kubota, K., Keith, F. J. and Gay, N. J. (1995). Wild type and constitutively activated forms of the Drosophila Toll receptor have different patterns ofN-linked glycosylation. FEBS Lett 365: 83-86Lagueux, M., et al. (2000). Constitutive expression of a complement-like protein in Toll and JAKgain-of-function mutants of Drosophila. Proc. Natl. Acad. Sci. 97: 11427-11432Larrain, J., et al. (2000). BMP-binding modules in chordin: a model for signalling regulation in the extracellular space. Development 127: 821-830 Leatherman, J. L., Levin, L., Boero, J. and Jongens, T. A. (2002). germ cell-less acts to repress transcription during the establishment of the Drosophila germ cell lineage. Curr Biol 12(19): 1681-1685. PubMed ID: 12361572 Lemaitre, B., et al. (1995). Functional analysis and regulation of nuclear import ofdorsal during the immune response in Drosophila. EMBO J 14: 536-545Lemaitre, B., et al. (1996). The Dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973-983Pae, J., Cinalli, R. M., Marzio, A., Pagano, M. and Lehmann, R. (2017). GCL and CUL3 control the switch between cell lineages by mediating localized degradation of an RTK. Dev Cell 42(2): 130-142 e137. PubMed ID: 28743001 Leulier, F., Parquet, C., Pili-Floury, S., Ryu, J. H., Caroff, M., Lee, W. J., Mengin-Lecreulx, D. and Lemaitre, B. (2003). The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat. Immunol. 4: 478-484. 12692550 Levashina, E. A., et al. (1999). Constitutive activation of Toll-mediated antifungal defense in serpin-deficient Drosophila. Science 285: 1917-9. PubMed ID: 10489372 Lewis, M., Arnot, C. J., Beeston, H., McCoy, A., Ashcroft, A. E., Gay, N. J. and Gangloff, M. (2013). Cytokine Spatzle binds to the Drosophila immunoreceptor Toll with a neurotrophin-like specificity and couples receptor activation. Proc Natl Acad Sci U S A 110: 20461-20466. PubMed ID: 24282309Lieberfarb, M. E., et al. (1996). Mutations that perturb poly(A)-dependent maternalmRNA activation block the initiation of development. Development 122: 579-588Ligoxygakis, P., et al. (2002). Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 297: 114-116. 12098703 Luschnig, S., et al. (2004). An F1 genetic screen for maternal-effect mutations affecting embryonic pattern formation in Drosophila melanogaster. Genetics 167: 325-342. Medline abstract: 15166158 Matsuguchi, T., et al. (2003). JNK-interacting protein 3 associates with Toll-like receptor 4 and is involved in LPS-mediated JNK activation. EMBO J. 22: 4455-4464. 12941697 Mavrakis, M., Rikhy, R. and Lippincott-Schwartz, J. (2008). Plasma membrane polarity and compartmentalization are established before cellularization in the fly embryo. Dev. Cell 16: 93-104. PubMed Citation: 19154721 Maxton-Kuchenmeister, J., et al. (1999). Toll homologue expression in the beetle tribolium suggests a different mode of dorsoventral patterning than in drosophila embryos. Mech. Dev. 83(1-2): 107-14Medzhitov, R., Preston-Hurlburt, P. and Janeway, C. A. (1997). A human homologue of the Drosophila Toll protein signalsactivation of adaptive immunity. Nature 388(6640): 394-397Medzhitov, R., et al. (1998). MyD88 is an adaptor protein in the hToll/IL-1 receptor family signaling pathways. Mol. Cell 2(2): 253-8Mellroth, P., Karlsson, J. & Steiner, H. (2003). A scavenger function for a Drosophila peptidoglycan recognition protein. J. Biol. Chem. 278: 7059-7064. 12496260 Meng, X., Khanuja, B. S. and Ip, Y. T. (1999). Toll receptor-mediated Drosophila immune response requires Dif, an NF-kappaB factor. Genes Dev. 13(7): 792-797Michel, T., Reichhart, J. M., Hoffmann, J. A. and Royet, J. (2001). Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature. 414(6865): 756-9. 11742401 Ming, M., Obata, F., Kuranaga, E. and Miura, M. (2014). Persephone/Spatzle pathogen sensors mediate the activation of Toll receptor signaling in response to endogenous danger signals in apoptosis-deficient Drosophila. J Biol Chem [Epub ahead of print]. PubMed ID: 24492611Mitcham, J. L., et al. (1996). T1/ST2 signaling establishes it as a member of an expanding interleukin-1 receptor family. J. Biol. Chem. 271: 5777-5783Miura, G. I., et al. (2008). Myopic acts in the endocytic pathway to enhance signaling by the Drosophila EGF receptor. Development 135: 1913-1922. PubMed Citation: 18434417 Morisato, D. and Anderson, K. V. (1994). The spätzle gene encodes a component of the extracellular signaling pathway establishing the dorsal-ventral pattern of the Drosophila embryo. Cell 76: 677-88Muzio M., et al. (1997). IRAK (Pelle) family member IRAK-2 and MyD88 as proximalmediators of IL-1 signaling. Science 278(5343): 1612-1615Muzio M., et al. (1998). The human toll signaling pathway: divergence of nuclear factor kappaB and JNK/SAPK activation upstream of tumor necrosisfactor receptor-associated factor 6 (TRAF6). J. Exp. Med. 187(12): 2097-101Nambu, J. R., et al. (1990). The single-minded gene of Drosophila is required for the expression of genes important for the development of CNSmidline cells. Cell 63: 63-75Ninomiya-Tsuji, J., et al. (1998). The kinase TAK1 can activate the NIK-I kappaB as well as theMAP kinase cascade in the IL-1 signalling pathway. Nature 398(6724): 252-6Nonaka, S., Kawamura, K., Hori, A., Salim, E., Fukushima, K., Nakanishi, Y. and Kuraishi, T. (2018). Characterization of Spz5 as a novel ligand for Drosophila Toll-1 receptor. Biochem Biophys Res Commun. PubMed ID: 30361090Norris, J. L. and Manley, J. L. (1995). Regulation of dorsal in cultured cells by Toll and tube:tube function involves a novel mechanism. Genes Dev. 9: 358-369Norris, J. L. and Manley, J. L. (1996). Functional interactions between the pelle kinase, Toll receptor, andTube suggest a mechanism for activation of Dorsal. Genes Dev. 10(7): 862-72Nose, A., Mahajan, V. B. and Goodman, D. S. (1992). Connectin: a homophilic cell adhesion molecule expressed on a subset of muscles and the motoneurons that innervatethem in Drosophila. Cell 70: 553-67Ollendorff, V., et al. (1994). The GARP gene encodes a new member of the family of leucine-rich repeat-containing proteins. Cell Growth Differ 5: 213-9Ozuak, O., Buchta, T., Roth, S. and Lynch, J. A. (2014). Dorsoventral polarity of the Nasonia embryo primarily relies on a BMP gradient formed without input from Toll. Curr Biol [Epub ahead of print]. PubMed ID: 25308075Park, J. S., et al. (2004). Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein. J. Biol. Chem. 279(9): 7370-7. 14660645 Peng, J., Zipperlen, P. and Kubli, E. (2005). Drosophila Sex-peptide stimulates female innate immune system after mating via the Toll and Imd pathways. Curr. Biol. 15: 1690-1694. 16169493Prothmann, C., Armstrong, N. J. and Rupp, R. A. W. (2000). The Toll/IL-1 receptor binding protein MyD88 is required for Xenopusaxis formation. Mech. Dev. 97: 85-92. PubMed Citation: 11025209Pujol, N., et al. (2001). A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr. Biol. 11: 809-821. PubMed Citation: 11516642 Qiu, P. Pan, P. C. and Govind, S. (1998). A role for the Drosophila Toll/Cactus pathway in larval hematopoiesis. Development 125(10): 1909-1920. PubMed Citation: 9550723 Rock, F. L., et al. (1998). A family of human receptors structurally related to Drosophila Toll. Proc. Natl. Acad. Sci. 95: 588-593. PubMed Citation: 9435236 Roh, K. B., et al. (2009). Proteolytic cascade for the activation of the insect toll pathway induced by the fungal cell wall component. J. Biol. Chem. 284(29): 19474-81. PubMed Citation: 19473968Rose, D., et al. (1997). Toll, a muscle cell surface molecule, locally inhibits synaptic initiation of the RP3motoneuron growth cone in Drosophila Development 124 (8): 1561-1571Rose, D. and Chiba, A. (1999). A single growth cone is capable of integratingsimultaneously presented and functionally distinctmolecular cues during target recognition. J. Neurosci. 19(12): 4899-4906. PubMed ID: 10366624Rosetto, M., et al. (1995). Signals from the IL-1 receptor homolog, Toll, can activate an immune response in a Drosophila hemocyte cell line. Biochem. Biophys. Res. Commun. 209: 111-116Roth, S. (1994). Axis determination. Proteolytic generation of amorphogen. Curr Biol 4: 755-7Rusch, J. and Levine, M. (1994). Regulation of the Dorsal morphogen by the Toll and torso signaling pathways: a receptor tyrosine kinase selectively masks transcriptional repression. Genes Dev 8: 1247-1257Rust, K., Byrnes, L. E., Yu, K. S., Park, J. S., Sneddon, J. B., Tward, A. D. and Nystul, T. G. (2020). A single-cell atlas and lineage analysis of the adult Drosophila ovary. Nat Commun 11(1): 5628. PubMed ID: 33159074Salles, F. J., et al (1994). Coordinate initiation of Drosophila development byregulated polyadenylation of maternal messenger RNAs. Science 266: 1996-1999Sanz, L., Diaz-Meco, M. T, Nakano, H. and Moscat, J. (2000). The atypical PKC-interacting protein p62 channels NF-kappaB activation by the IL-1-TRAF6 pathway.EMBO J. 19(7): 1576-86. 10747026Schisa, J. A. and Strickland, S. (1998). Cytoplasmic polyadenylation of Toll mRNA is required for dorsal-ventral patterning in Drosophila embryogenesis. Development 125(15): 2995-3003. PubMed ID: 9655821Schmid, M. R., Anderl, I., Vesala, L., Vanha-Aho, L. M., Deng, X. J., Ramet, M. and Hultmark, D. (2014). Control of Drosophila blood cell activation via Toll signaling in the fat body. PLoS One 9: e102568. PubMed ID: 25102059Schneider, D. S., et al. (1991). Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required fordorsal-ventral polarity in the Drosophila embryo. Genes Dev 5: 797-807Schneider, D. S., et al. (1994). A processed form of the Spätzle protein defines dorsal-ventral polarity in the Drosophila embryo. Development 120: 1243-50Schmidt, E. D. L., et al. (1997). A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent toform embryos. Development 124: 2049-2062Shen, B. and Manley, J. L. (1998). Phosphorylation modulates direct interactions between the Toll receptor,Pelle kinase and Tube. Development 125: 4719-4728Shen, B. and Manley, J. L. (2002). Pelle kinase is activated by autophosphorylation during Toll signaling in Drosophila. Development 129: 1925-1933. 11934858 Shields, A., Amcheslavsky, A., Brown, E., Lee, T. V., Nie, Y., Tanji, T., Ip, Y. T. and Bergmann, A. (2022). Toll-9 interacts with Toll-1 to mediate a feedback loop during apoptosis-induced proliferation in Drosophila. Cell Rep 39(7): 110817. PubMed ID: 35584678Sorrentino, R. P., Melk, J. P. and Govind, S. (2004). Genetic analysis of contributions of dorsal group and JAK-Stat92E pathway genes to larval hemocyte concentration and the egg encapsulation response in Drosophila. Genetics 166: 1343-1356. 15082553 Steiner, H. (2004). Peptidoglycan recognition proteins: on and off switches for innate immunity. Immunol. Rev. 198: 83-96. 15199956 Stein, D. and Nusslein-Volhard, C. (1992). Multiple extracellular activities in Drosophila eggperivitelline fluid are required for establishment ofembryonic dorsal-ventral polarity. Cell 68: 429-40Tauszig, S., et al. (2000). Toll-related receptors and the control of antimicrobial peptideexpression in Drosophila. Proc. Natl. Acad. Sci. Vol. 97: 10520-10525Tipping, M., et al. (2010). beta-arrestin Kurtz inhibits MAPK and Toll signalling in Drosophila development. EMBO J. 29: 3222-3235. PubMed Citation: 20802461Towb, P., Galindo, R. L. and Wasserman, S. A. (1998). Recruitment of Tube and Pelle to signaling sites at the surface of the Drosophila embryo. Development 125: 2443-2450Wang, J., Tao, Y., Reim, I., Gajewski, K., Frasch, M. and Schulz, R. A. (2005). Expression, regulation, and requirement of the Toll transmembrane protein during dorsal vessel formation in Drosophila melanogaster. Mol. Cell Biol. 25(10): 4200-10. 15870289 Wang, Y., Yang, F., Cao, X., Zou, Z., Lu, Z., Kanost, M. R. and Jiang, H. (2020). Hemolymph protease-5 links the melanization and Toll immune pathways in the tobacco hornworm, Manduca sexta. Proc Natl Acad Sci U S A 117(38): 23581-23587. PubMed ID: 32900946Werner, T., Borge-Renberg, K., Mellroth, P., Steiner, H. and Hultmark, D. (2003). Functional diversity of the Drosophila PGRP-LC gene cluster in the response to lipopolysaccharide and peptidoglycan. J. Biol. Chem. 278: 26319-26322. 12777387 Wesche, H., Henzel, W. J., Shillinglaw, W., Li, S. and Cao, Z. (1997). MyD88: an adapter that recruits IRAK to the IL-1 receptor complex. Immunity 7:837-847. 9430229 Wharton, K. A. and Crews, S. T. (1993). CNS midline enhancers of the Drosophila slit and Toll genes. Mech. Dev. 40: 141-154. 8494768 Whitham, S., et al. (1994). The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78: 1101-1115Winans, K. A. and Hashimoto, C. (1995). Ventralization of the Drosophila embryo by deletion ofextracellular leucine-rich repeats in the Toll protein. Mol Biol Cell 6: 587-596Yang, R. B., et al. (1998). Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 395(6699): 284-8 Yamagata, M., Merlie, J. P. and Sanes, J. R. (1994). Interspecific comparisons reveal conserved features of the Drosophila Toll protein. Gene 139: 223-8Yamamoto, M., et al. (2002). Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 420: 324-329. 12447441 Toll: Biological Overview Evolutionary Homologs Regulation Protein Interactions Developmental Biology Effects of Mutation




Kubota Product Identification Number

2ff7e9595c


1 view0 comments

Recent Posts

See All

Comments


bottom of page